An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

نویسندگان

  • Akrem Sellami
  • Imed Riadh Farah
  • Basel Solaiman
چکیده

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI. Keywords—Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object c...

متن کامل

Vision-optimized Image-adapted Projections for Visualization of Hyperspectral Imagery

Hyperspectral data visualizations are useful as a background layer to labeling information in the hyperspectral scene such as classification information, locations, or geographic features. Given a hyperspectral image H , where the ith-jth pixel Hij is a d-dimensional vector representing reflectance at d wavelengths, any dimensionality-reduction method an be used to reduce the d dimensions down ...

متن کامل

Object Detection from Hs/ms and Multi-platform Remote- Sensing Imagery by the Integration of Biologically and Geometrically Inspired Approaches

This paper presents a system that integrates biologically and geometrically inspired approaches to detecting objects from hyperspectral and/or multispectral (HS/MS), multiscale, multiplatform imagery. First, dimensionality reduction methods are studied and used for hyperspectral dimensionality reduction. Then, a biologically inspired method, SLEGION (Spatial Locally Excitatory Globally Inhibito...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017